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A Theory of the Diffusion Coefficient 
in a Liquid Metal: I 
T. GASKELL 
Department of Physics 
The University 
Shefield 

Abstract-An expression has been derived for the diffusion coefficient in terms 
of the interatomic potential, the pair distribution function and the self- 
correlation function in a liquid. By making use of an earlier result for the 
time-dependent pair distribution function, which includes correlation in the 
relative motion of two atoms, the expression has been made applicable to 
any type of interatomic core potential. In particular it will be ueful in a 
liquid metal where a relatively soft core is a generally accepted feature of the 
effective interionic potential.' 

1. Introduction 

In a recent papercl) a first principles calculation of the velocity auto- 
correlation function and diffusion coefficient in a dense classical 
liquid has been attempted. It was necessary in this calculation to 
separate the core from the relatively weak longer ranged part of the 
potential and to treat its effect separately in a physically realistic 
way. The method involved was we believe probably most satis- 
factory for a perfectly rigid core, although it has been applied with 
success to liquid argon in conditions closely corresponding to the 
triple point. In this case a 6-12 potential was assumed to be ade- 
quate to describe the interatomic forces, with an appropriate defini- 
tion of the core, as discussed by Barker and Gaskell.(2) 

In  a liquid metal the softer core,@) which is generally thought to 
be more appropriate to an effective interionic potential in these 
liquids, makes the applications of the above theory somewhat less 
satisfactory bearing in mind that the approximations involved in the 
calculation of the velocity autocorrelation function were designed 
for a rigid core. This work has been carried out to try to overcome 
the problem of having to separate the potential in this way, and to 
derive an expression for the diffusion coefficient in a liquid metal in 
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16 T. G A S K E L L  

which both parts of the potential i.e. the relatively soft core and long 
range oscillatory tail were automatically taken into account. 

The velocity autocorrelation function is defined as (vi(t) * ~ ~ ( 0 ) )  
where vi(t) denotes the velocity of any atom in the liquid at time t 
and the brackets a canonical ensemble average. If we describe the 
normalized velocity autocorrelation function ( vi ( t  ) - vi (0) ) / ( vi2( 0) ) 
by #( t )  the basis of our approach is to derive an equation of the form 

d 
dt 0 
- #( t )  + s' d7 K ( T ) # ( ~  - T )  = 0 

where the kernel of this integrodifferential equation K(7)  has the 
intuitive interpretation of a " memory " function.(4) It is well known 
that the diffusion coefficient, D, is given by the equation 

m being the atomic mass. 

2. Derivation of the Memory Function 

Consider the equation of motion of one of the atoms in the liquid 
whose position and velocity we describe by x i ( t )  and vi(t)  respectively. 
It is given by 

d 
dt m -v,(t)  = - 

where the summation extends over the other atoms in the liquid. We 
shall obtain from this equation a result for the velocity auto- 
correlation function of the form of (1.1). Although an exact expres- 
sion for the memory function was given by Z ~ a n z i g ( ~ )  in terms of a 
projection operator, only limited success has been achieved in 
attempts to evaluate the expression in a practical application,(6) 
especially in the problem of taking into account the effects of a 
strongly repulsive atomic core. Instead of using the formally exact 
expression for the memory function we prefer instead to  start from 
Eq. (2 .1)  and use a rather more intuitive approach. 
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DIFFUSION IN A L I Q U I D  M E T A L  17 

We form the scalar product of both sides of Eq. (2.1) with v i ( s )  
for some time s < t ,  to give 

dvi m - ( t )  . v i ( s )  = - C v i ( s )  * V i  +(I x i ( t )  - x j ( t )  1 )  
dt j#i  

By summing over the labels i on both sides of this equation@) we 
obtain 

The second term on the right hand side of this equation may be 
written 

and therefore the equation becomes 

Each term in the summation over the label i is identical when we 
take a canonical ensemble average of both sides and therefore we 
may write 

and because the potential depends on x i j  we may replace V i  by V i j  
and finally obtain the result which forms the basis of our calculation, 
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18 T. Q A S K E L L  

namely 

Carrying out the angular integration with respect to x this latter 
expression may be written as 

m @ ( t )  vi(s)) 

d+ m 

- dxx3f(qx) - (iq.vij(s)exp( -iq.xij(t))) (2.3) - -$$i.Jdq Jo dx 

where f(qx) = (sin (qx) - qx cos (q~)) / (qx)~.  Using the identity 

x2 d sin(qx) x”fqs) = ---___ 
q2& P X  

Eq. (2.3) can be put in the alternative form 

m (9 ( t )  * 

1 sin (qx) m 1 
axx2-- dq--- (iq . vij(s) exp ( - iq . xij(t))) =&/, 22J q2 qx 

If we replace at this stage the angular integration with respect to  x 
the above expression may be written 

- - -!- c J dx 2 & J dq (iq . vij(s) exp r - iq * (xij(t) - x)]) (2.4) 
16773 + i  

Remembering that the left hand side of this equation is the time 
derivative of a function of the time difference t -s, i t  is easily seen 
that interchanging the time variables on the right hand side of the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
2
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



DIFFUSION I N  A LIQUID METAL 19 

average only changes the sign of the equation and therefore we may 
write 

(2.5) 
Bearing in mind that we are looking for a result in the form (1.1) 

we shall rewrite the latter equation by making use of the following 
identity 

( - iq - vij(t) exp [ - iq - (xij(s) - x)]) 
t d  

= Js dT (iq * vij(t) exp [ - iq * (x$~(T) - x)]> 

and hence 

Thus far the equation is exact but in order to proceed further we 
shall at this stage have to  evaluate the ensemble average in an  
approximate way, beginning with the extraction of the initial con- 
figurations of the atoms from the exponent. 

Hence we write (2.6) in the following way 

. j dq $ <(q * vtj(t))(q * Vij(T>) 

- exp [ - iq * (xij(.) - xij(s) - y)] 6(x - y - xij(s))) 
(2.7) 

Now the expression within the averaging brackets can virtually be 
broken down into three periods of time, (i) the delta function which 
involves the initial configurations of the atoms, (ii) the period in 
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20 T. G A S K E L L  

which the atoms interact, i.e. from s + T ,  occurring in the variables 
within the exponent and finally (iii) the velocities being explicit 
functions of time from T + 6. We shall use an approximate pro- 
cedure, somewhat similar to  the spirit of the well known Vineyard 
approximation (although that was originally applied to a different 
problem), of averaging over the initial configurations of the atoms, 
then allowing them to migrate to their final positions xij(7), and 
finally, consistent with this f i s t  step, an average over the final 
velocities of the atoms. Therefore (2.7) becomes 

and 
1 

( ~ ( x - Y  -xij(s))) = V d l x - ~  1) 
where g( I x - y I) is the radial distribution function for the liquid we 
are able to express (2.8) as 

mT$ ( t )  * ~ ~ ( 8 ) )  = 5 I t  dT (vij(t) * vij(.)) dx - dy 
3 J ZJ 
t 

= J dT (vij(t) * vij(.)) dx - dy 
6 s  J ZJ 

d 
*GR(Y,T--6)Q(1X-YI) (2.9) 

p as usual denoting the atomic density and 

GR(Y, -8) (S(y - x i j ( ~ )  +xij(S))) 
is a function which describes the relative motion of two atoms 
in the liquid (the labels i, j now refer to any two atoms in the 
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D I F F U S I O N  I N  A L I Q U I D  METAL 21 

ensemble), being essentially the probability that the change in inter- 
atomic separation between two atoms i and j in time T - s is y. It 
has been pointed out(’) that if it is assumed in performing this 
average that each atom migrates independently from its initial to  
its final position G R ( ~ ,  T - s) has the same form, within the Gaussian 
approximation, of the self-correlation function but with the introduc- 
tion of an effective mass m*. Hence approximately 

GR(Y, T - s) = ( 4 4 7  - s)}-S‘2exp ( - y2/4a(~ - s)) = G,*(y, T - s) (2.10) 

with 

U(t) = - dT (t - T)$(T)  k B T S L  m* 0 

and m* = ml2, the reduced mass in the relative motion of the two 
atoms. Along with this approach we shall write 

(vij(t) . v i j ( ~ ) >  = ((vi(t) -vj(t)) * (Vi(T) - v j ( ~ ) ) )  = 2(vi(t) . v i ( ~ ) >  

having neglected correlations of the type ( v , ( t ) * ~ , ( ~ ) ) .  It is true 
that when t = T the velocities of the two atoms are statistically 
independent and (vi(t) vj(t)) = 0, but the omission of this term when 
t + T is consistent with the assumption above that the two atoms 
move independently. 

Therefore (2 .9 ) ,  within this scheme, can clearly be written in the 
required form (now putting s = 0 )  

d 
- +(t) + Jt dr K(T)$ (~  - T )  = O 
dt 0 

with 

which was the stated purpose of this section. 

function, K(T) ,  defined above. The first is that its value at T = 0 
Two comments can be made immediately about the memory 

is exact. It is easily demonstrated that this guarantees the correct 
behaviour of the calculated correlation function $(t), a t  sufficiently 
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22 T. G A S K E L L  

small t ,  because the coefficient of ta  in the expansion 
t 2  

# ( t )  = 1 + $(O)  j + - * - 
will be exact, being given by &(O) = -K(O).  The second is that the 
decoupling procedure we have adopted allows the particles to 
approach each other arbitrarily closely for 7 > 0 and the integrations 
in the definition of the memory function will be divergent for a 
sufficiently hard core. K(7)  therefore will not exist for this type of 
potential. The problem we shall try to solve in the next section is 
that  of modifying the above memory function in such a way that 
it will be defined for a potential which is singular a t  the origin, and 
at the same time mainta.ining the known exact value of the memory 
function a t  7 = 0. 

3. Modified Memory Function: Correlated Motion of the Atoms 

The difficulty of using the latter formulation of the memory 
function with a singular potential arises when we average a t  an 
earlier stage over the initial configurations of the atoms and then 
allow them to migrate to their final positions. To overcome the 
problem we must build in some correlation also in their final positions 
and this we achieve in the following way. 

discussed the evaluation 
of a correlation function involving the relative motion of two atoms 
in a liquid, being essentially the probability that a t  t = 0 two atoms 
will be a distance r apart while a t  t = 7 the separation of the same 
two atoms will be x, i.e. the ensemble average ( N  being the number of 
atoms) 

Some years ago Oppenheim and 

If we use the approximation of extracting the time dependent part 
by writing this as (S(x - r - xij(7) + x,,(O)) 6(r - xij(0))) and then 
averaging over the initial configurations of the atoms, as we did in 
the previous section to derive the memory function, we obtain 
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D I F F U S I O N  IN A L I Q U I D  METAL 23 

(i, j again refer to  any two atoms in the ensemble). We could 
now use Eq. (2.10) to evaluate the time dependent part of the above 
expression. A more satisfactory approximation, in which the atoms 
are correlated in both their initial and final positions (as they should 
be), was derived by Oppenheim and Bloom, and is given by 

G(r, x, T )  e ~ g 1 ~ z ( ( r ) g ' ~ z ( ( . ) { 8 ~ ~ ~ } - 3 ~ z  exp ( - 1 x - r 12/8&) (3.3) 

The accuracy of this result is extremely difficult to assess, since i t  is 
based on a number of approximations (notably a constant accelera- 
tion approximation), but i t  is interesting to  note that the time 
dependent part of this expression has the form of the hydrodynamic 
limit of the self-correlation function in a fluid but with an effective 
mass m* = m/2. Indeed G,*(y, T )  defined in, (2.10) has exactly this 
form as sufficiently large T.  We therefore make the further assump- 
tion that a suitable extrapolation of Eq. (3.3), to achieve a result to 
cover all values of T ,  is to  replace the time dependent part of (3.3) 
by a,*(lx-r 1, T )  as defined in (2.10). Therefore we finally obtain 
for the so-called time dependent pair distribution function 

(3.4) 

Comparing (3.2) and (3.4) suggests that to recover the result (3.4), 
after making the approximation of decoupling and averaging over 
the initial atomic configurations, we must make the replacement 

#(r, x,  T )  N pg1/2(r)g1/2(z)G,*() x - r  I,.) 

9'/2(4 
g1l2(r) 

(6(x - r - xij(.)  + ~ ~ ~ ( 0 ) ) )  N - G,*( I x - r I ,  T )  (3.5) 

in order that  the relative motion of the atoms be correlated a t  all 
times. Because we have used precisely the same initial decoupling 
scheme to give the result (2.9), we argue that its most serious defect, 
namely the subsequent uncorrelated motion of the atoms, can be 
corrected by making the modification shown in the latter equation. 
By decoupling in the way we have indicated, we have clearly lost the 
constraint imposed by knowing that the final separation of the atoms 
is x. The latter step reimposes this condition. With this correction 
therefore the memory function becomes 

It. is once again easily confirmed that K ( 0 )  is exact. 
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24 T. G A S K E L L  

Remembering that the pair distribution function may be written 
g(r) = exp [ - u(r) /ksT] ,  where u(r)  is the potential of mean force, i t  
quickly follows 

and the memory function may be more conveniently expressed as 

or alternatively ( 3 . 7 )  

= 2 1 dx [g1”(.)V2+(z) + d+ - (5) ‘2 (z)] 
3m dx dx 

* 1 dy Gs*(Y, 7)g1/’(1 x - 9  1) 
the last step following on integrating by parts. From a computa- 
tional point of view the first of the latter equations is probably the 
most useful, because in a practical application of these results to  a 
liquid metal i t  will be necessary to use tabulated values of the radial 
distribution function obtained from molecular dynamics calcula- 
tions,@) and this expression can be conveniently written in terms of 
g1!2(x) only, without involving its derivative‘. 

It is well known that (1.1) can be quickly solved by means of the 
Laplace transform subject to  the boundary condition # ( O )  = 1, and 
that the diffusion coefficient is given in terms of the memory function 
by 

D = m { s y  dt K ( t ) ) l .  

4. Discussion 

In a number of recent attempts to produce a first principles 
calculation of the velocity autocorrelation function in a dense fluid, 
the problem of successfully handling the strongly repulsive core of 
the interatomic force has turned out to be one of the most trouble- 
s ~ r n e , ( ~ ~ ~ . ~ )  although progress has been made in the case of a perfectly 
rigid core.(’) The dccoupling scheme we have used in order to derive 
a,n expression for the memory function is basically similar to  that 
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D I F F U S I O N  I N  A LIQUID M E T A L  25 

employed with some success in an earlier calculation in liquid argon,c2) 
but the approach has been modified in an attempt to solve the 
difficult problem of describing the correlated relative motion of two 
atoms over a period of time. The inclusion of correlation in the 
atomic dynamics has been achieved by making use of an earlier 
result for the time-dependent pair distribution function derived by 
Oppenheim and Bloom. As always in a complex many-body problem, 
approximations are difficult to justify and we must a t  least try to 
ensure in our decoupling scheme that the known behaviour of the 
velocity autocorrelation function in some limit is correctly repro- 
duced, in this case the time expansion in the limit t + 0. Incidentally 
the Eqs. (3.7) are not defined for a rigid core interaction, because of 
the discontinuous nature of the function g1/2(x) in this case. 

We eventually derive an expression for the memory function, K( t ) ,  
which is defined for a continuous though strongly repulsive potentia,l 
for all values oft. It remains to examine the validity of'the approach 
by means of a practical application of the result, if sufficiently 
detailed information about the pair distribution function in a liquid 
metal becomes available, preferably over a range of densities. 
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